重新审视影响力分析

一旦变量(根据作者,也称为因素和驱动因素)被确定,在我们的案例中 绘制的而大多数预见方法的目的是减少它们的数量,即只保留这些变量中的几个。

事实上,考虑到认知的局限性,以及有限的资源,人们试图获得一些可以被人脑轻松和相对快速地组合的变量。

我们在这里面临的方法论问题是如何最多减少这个变量的数量,确保我们不会重新引入偏见或/和简化我们的模型,以至于变得无用或次优。

此外,考虑到从业者对复杂模型的潜在不良反应,能够提出一个适当的简化或缩小的模型(但仍忠实于初始模型)往往是必要的。

这篇文章的其余部分是为我们 成员 以及那些购买了特殊访问计划的人。确保你得到真正的分析,而不是意见,或者更糟的是,假新闻。 登录 并访问这篇文章。

发布者:Dr Helene Lavoix (MSc PhD Lond)

Helene Lavoix博士 是 Red Team Analysis Society 的总裁兼创始人。她拥有伦敦大学亚非学院(SOAS)政治学博士学位和亚洲国际政治硕士学位(优异成绩),以及金融学硕士学位(法国大学校毕业)。 她是战略展望和预警专家,尤其是国家和国际安全问题方面的专家,拥有超过 25 年的国际关系经验和 15 年的战略展望和预警经验。Lavoix 博士曾在五个国家生活和工作过,在另外 15 个国家执行过任务,并在世界各地培训过高级官员,例如在新加坡和作为欧洲项目的一部分在突尼斯。 她在新加坡的 RSIS、SciencesPo-PSIA 或突尼斯的 ESFSI 等著名机构教授战略展望和预警的方法与实践。她定期发表关于地缘政治问题、铀安全、人工智能、国际秩序、中国崛起和其他国际安全主题的文章。 拉沃瓦博士致力于不断改进预测和预警方法,将学术专长和实地经验相结合,预测未来的全球挑战。

ZH