骚乱和抗议一直在许多国家逐步发生,并以加速的方式进行。从2005年的法国开始,它们蔓延到世界大部分地区,从 "阿拉伯之春 "到泰国,再到香港、美国,或者最近的委内瑞拉、阿尔及利亚和法国,再到年底的黄背心运动。
继续阅读“Foreseeing the Future of the Modern Nation-State: the Chronicles of Everstate”
骚乱和抗议一直在许多国家逐步发生,并以加速的方式进行。从2005年的法国开始,它们蔓延到世界大部分地区,从 "阿拉伯之春 "到泰国,再到香港、美国,或者最近的委内瑞拉、阿尔及利亚和法国,再到年底的黄背心运动。
继续阅读“Foreseeing the Future of the Modern Nation-State: the Chronicles of Everstate”
一旦变量(根据作者,也称为因素和驱动因素)被确定,在我们的案例中 绘制的而大多数预见方法的目的是减少它们的数量,即只保留这些变量中的几个。
事实上,考虑到认知的局限性,以及有限的资源,人们试图获得一些可以被人脑轻松和相对快速地组合的变量。
我们在这里面临的方法论问题是如何最多减少这个变量的数量,确保我们不会重新引入偏见或/和简化我们的模型,以至于变得无用或次优。
此外,考虑到从业者对复杂模型的潜在不良反应,能够提出一个适当的简化或缩小的模型(但仍忠实于初始模型)往往是必要的。