Réexamen de l'analyse d'influence

Une fois que les variables (également appelées facteurs et déterminants selon les auteurs) ont été identifiées - et dans notre cas mappéLa plupart des méthodes de prévision visent à réduire leur nombre, c'est-à-dire à ne conserver que quelques-unes de ces variables.

En effet, compte tenu des limites cognitives, ainsi que des ressources limitées, on essaie d'obtenir un certain nombre de variables qui peuvent être facilement et relativement rapidement combinées par le cerveau humain.

Le problème auquel nous sommes confrontés ici sur le plan méthodologique est de savoir comment réduire au mieux ce nombre de variables, en s'assurant que nous ne réintroduisons pas de biais et/ou que nous simplifions notre modèle au point qu'il devienne inutile ou sous-optimal.

En outre, compte tenu également des réactions indésirables potentielles des praticiens à des modèles complexes, il est le plus souvent nécessaire de pouvoir présenter un modèle correctement simplifié ou réduit (tout en restant fidèle au modèle initial).

La partie restante de cet article est destinée à notre membres et ceux qui ont acheté des plans d'accès spéciaux. Assurez-vous d'obtenir une véritable analyse et non des opinions ou, pire, des fausses nouvelles. Log in et accédez à cet article.

Publié par Dr Helene Lavoix (MSc PhD Lond)

Dr Hélène Lavoix is President and Founder of The Red Team Analysis Society. She holds a doctorate in political studies and a MSc in international politics of Asia (distinction) from the School of Oriental and African Studies (SOAS), University of London, as well as a Master in finance (valedictorian, Grande École, France). An expert in strategic foresight and early warning, especially for national and international security issues, she combines more than 25 years of experience in international relations and 15 years in strategic foresight and warning. Dr. Lavoix has lived and worked in five countries, conducted missions in 15 others, and trained high-level officers around the world, for example in Singapore and as part of European programs in Tunisia. She teaches the methodology and practice of strategic foresight and early warning, working in prestigious institutions such as the RSIS in Singapore, SciencesPo-PSIA, or the ESFSI in Tunisia. She regularly publishes on geopolitical issues, uranium security, artificial intelligence, the international order, China’s rise and other international security topics. Committed to the continuous improvement of foresight and warning methodologies, Dr. Lavoix combines academic expertise and field experience to anticipate the global challenges of tomorrow.

FR